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ABSTRACT
Background: Continuous renal replacement therapy (CRRT) is routinely used in human patients with acute kidney injury 
(AKI) but studies in dogs are scarce.
Objective: To describe CRRT in dogs and assess the utility of a previously validated scoring system for dogs with AKI undergoing 
hemodialysis, and the Acute Patient Physiological and Laboratory Evaluation (APPLEFull/APPLEFast) scores, for outcome prediction.
Animals: Thirty, client-owned dogs.
Methods: Cases were retrospectively reviewed. Prognostic scores were calculated upon admission and before CRRT initiation. 
The CRRT effluent dose followed the KDIGO guidelines. Receiver operating characteristic curves (ROCC) were constructed to 
evaluate the prognostic utility of these scores.
Results: Median (IQR) serum creatinine (mg/dL) at CRRT initiation, at discharge, and 3 months after discharge were 9.4 (7.4), 
3.4 (1), and 1.3 (0.3) respectively. Median (IQR) treatment duration and total number of treatments were 24 (18.5) h and 2 (2) treat-
ments, respectively. The prescribed median (IQR) CRRT effluent dose was 29 (18.5) mL/kg/h. Median (IQR) overall time-average 
concentration for urea and creatinine were 92 (60) mg/dL and 3.7 (1.7) mg/dL, respectively. The normalized weekly median (IQR) 
standardized Kt/V was 2.41 (2.29). Eleven dogs (37%) survived to discharge/3-months after treatment. Areas under the ROCC 
for the APPLEFull/APPLEFast scores before CRRT initiation were 0.99 (95% CI, 0.99–1.00) and 0.91 (95% CI, 0.81–1.00), respec-
tively. Optimal cutoff points were < 35 for the APPLEFull and < 23 for the APPLEFast, yielding sensitivities/specificities of 100% 
(95% CI, 74.12%–100.0%)/94.7% (95% CI, 75.36%–99.73%) and 90.9% (95% CI, 62.26%–99.53%)/78.95% (95% CI, 56.67%–91.49%), 
respectively.
Conclusion: The APPLE scores, unlike clinicopathological findings or the Segev score, proved to be a highly discriminatory 
prognostic tool. Additionally, the human-derived, KDIGO guideline-based CRRT protocol proved safe and efficacious in dogs 
undergoing CRRT.
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1   |   Introduction

Acute kidney injury (AKI) is associated with high morbidity and 
case fatality rate [1–3]. It often engenders severe metabolic de-
rangements, might lead to multi-organ dysfunction, and requires 
urgent intervention. When standard treatments fail, renal replace-
ment therapy (RRT) provides critical support for managing AKI 
in dogs [4–7]. Intermittent hemodialysis (IHD) and continuous 
renal replacement therapy (CRRT) are the two main RRT modali-
ties in human patients with severe AKI. The former often involves 
short-duration treatments performed over several days a week and 
is associated with rapid solute and fluid removal, thereby poten-
tially increasing hemodynamic instability. The latter, conversely, 
entails slower, continuous treatment, which often exceeds 24 h, 
and mitigates the risks of dialysis disequilibrium or the deleterious 
consequences of rapid fluid and solute removal [5–8]. According 
to Kidney Disease: Improving Global Outcomes (KDIGO) guide-
lines, CRRT is suggested over IHD for hemodynamically unstable 
patients and for those with acute brain injury, increased intracra-
nial pressure, or generalized brain edema. However, studies in hu-
mans report similar survival rates with either modality, even for 
hemodynamically unstable patients with AKI [9, 10].

Due to financial and staffing constraints, IHD and prolonged 
intermittent RRT are preferred in some veterinary facilities. 
However, because prolonged intermittent RRT and CRRT are 
technically easier to operate and do not require the specialized 
water purification systems needed for IHD, they have gained 
popularity in veterinary intensive care units in recent years. 
However, standardized protocols and further research are 
needed to optimize their use in dogs [6, 7].

Illness severity scores, such as the Acute Patient Physiologic and 
Laboratory Evaluation (APPLE) score, aid in standardizing dis-
ease severity among dogs and can be used for prognostication 
purposes. Two such scoring systems, the APPLEFast for rapid 
bedside assessment and the APPLEFull for comprehensive eval-
uation, can guide treatment decisions and predict survival in 
critically ill dogs [11]. Their prognostic utility in dogs with AKI 
undergoing CRRT has yet to be determined.

The objectives of this study were to evaluate the clinical utility 
of the APPLEFast and APPLEFull scores for outcome prediction 
in dogs undergoing CRRT and compare their performance to a 
previously validated scoring system for dogs with AKI undergo-
ing RRT, established by Segev et al. (model B score) [3, 12, 13]. 
Additionally, we sought to investigate associations between 
clinical and laboratory measures and survival and to describe 
the management of dogs with AKI undergoing CRRT, adopting 
protocols derived from guidelines for CRRT in humans.

2   |   Materials & Methods

2.1   |   Study Design and Data Collection

Dogs diagnosed with AKI or acute-on-chronic kidney disease 
and treated with CRRT between 2021 and 2023 were retrieved 
retrospectively. Additional inclusion criteria required com-
plete documentation of physical examination findings, ultra-
sound evaluation, and CRRT prescription details. Survival to 

discharge, in addition to 1-month and 3-month, post-discharge 
survival were used as outcome measures.

Grading of AKI was conducted according to International Renal 
Interest Society guidelines [14]. The APPLEFast, APPLEFull [11], 
and model B [3] scores were calculated, as previously described, 
upon admission and with APPLEFast and APPLEFull also before 
CRRT initiation.

Environmental causes of AKI, including heatstroke and snake-
bite, were diagnosed based on history and characteristic clin-
ical and laboratory findings [15, 16]. Systemic inflammatory 
response syndrome (SIRS) was identified based on clinical signs 
and laboratory findings, including fever/hypothermia, tachy-
cardia, tachypnea, leukocytosis, or leukopenia [17]. Infection 
and sepsis were confirmed by fine needle aspiration and culture 
of infected organs (orchitis/septic arthritis), and pyelonephritis 
by ultrasonographic evidence of pyelectasis, with urinary infec-
tion (urinalysis and culture) [18, 19]. Hemoabdomen was diag-
nosed by abdominocentesis and the presence of sanguineous, 
nonclotting peritoneal fluid and large numbers of erythrocytes 
cytologically, with a packed cell volume > 5% [20], while splenic 
torsion was diagnosed sonographically, with the diagnosis con-
firmed via direct visualization at the time of laparotomy [21]. 
Hematologic disorders (thrombocytopenia/pancytopenia) were 
identified by CBC and accompanying blood smear. Idiopathic 
non-immune-mediated hemolysis and exertional hemolysis 
were identified based on a history of recent physical activity and 
the presence of anemia, mild bilirubinemia, hemoglobinemia, 
and hemoglobinuria. Diagnosis was supported by the absence of 
spherocytes on peripheral blood smear and a negative saline ag-
glutination test [22, 23]. Pancreatitis was diagnosed based on a 
positive SNAP cPLI test (IDEXX Laboratories, Westbrook, ME, 
USA) and/or supportive ultrasonographic findings. These find-
ings included pancreatic enlargement, hypoechoic parenchyma 
(focal or diffuse), hyperechoic surrounding mesenteric fat, peri-
pancreatic fluid accumulation, evidence of extrahepatic biliary 
duct obstruction, or a combination thereof [24].

2.2   |   CRRT Delivery

Delivery of CRRT was performed using the Prismaflex CRRT 
System (Prismaflex CRRT System; Baxter Healthcare Corp., 
Deerfield, IL, USA) with polyarylethersulfone or AN69 hemofil-
ters (Prismaflex HF20, ST60, ST100, ST150; Baxter Healthcare 
Corp., Deerfield, IL, USA). The blood access lines and dialyzers 
were primed immediately before use with 0.9% saline containing 
5000 U of unfractionated heparin (TEVA LTD, Israel) per liter. 
For cases where the extracorporeal circuit volume exceeded 20% 
of the dog's blood volume or the hematocrit was < 20%, packed 
red blood cells were used to prime the circuit [25].

A bicarbonate-based solution was used as both the dialysate and 
replacement fluid for convection. Hemosol B0 solution (Gambro, 
Baxter International, Deerfield, IL, USA.) was used, with the 
following final composition: Na+ = 140 mEq/L; K+ = 0 mEq/L; 
HCO3

− = 32 mEq/L; Ca2+ = 1.75 mEq/L; Mg2+ = 0.5 mEq/L; 
Cl− = 109.5 mEq/L; and lactate 3 meq/L. Additives such as po-
tassium or sodium were included as necessary based on the 
dog's electrolyte and acid–base status.
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Blood flow rate was adjusted incrementally (1–50 mL/min based 
on the dog's weight) over 10–15 min, targeting the maximum 
tolerated level. Filtration fraction was maintained below 25% to 
minimize hemoconcentration and clotting risks [26].

2.3   |   Vascular Access

Vascular access was achieved using the modified Seldinger 
technique. Double-lumen dialysis catheters (GAMCATH 
Short-Term Catheters, Deerfield, IL, USA) were placed per-
cutaneously under general anesthesia into the jugular vein 
through a venotomy. The catheters were used exclusively for 
dialysis and handled aseptically by dialysis personnel. To 
prevent clotting, 100–5000 U/mL [27] unfractionated hepa-
rin was instilled into each catheter lumen between dialysis 
treatments.

2.4   |   Dialysis Prescription

A CRRT session was defined as a treatment period lasting 
≥ 24 h. The initiation of CRRT was prompted by the failure of 
medical therapy to manage life-threatening complications of 
uremia, guided by criteria such as severe fluid overload with 
low urine output, progressive azotemia, oliguria or anuria, and 
azotemia with uncontrolled electrolyte derangements and/or 
clinical signs [5, 7, 28, 29]. Although the protocol aimed to de-
liver continuous, uninterrupted therapy, technical issues (e.g., 
filter clotting) sometimes resulted in shorter sessions (minimum 
2 h). Conversely, when runs proceeded without interruption, 
circuits were maintained for up to 124 h before elective discon-
nection. The decision to initiate subsequent sessions was based 
on clinical evaluation. In anuric or oliguric dogs with persistent 
azotemia (serum creatinine > 2 mg/dL), treatment was resumed 
within 12 h if the previous session had been prematurely inter-
rupted. In contrast, in urine-producing dogs with normalized 
hydration and electrolyte concentrations, CRRT was typically 
resumed after 24–48 h with a median interdialytic period of 12 h 
across all sessions.

Adhering to KDIGO guidelines, CRRT dosing targeted an efflu-
ent flow rate of 20–25 mL/kg/h [28]. To accommodate therapy 
interruptions, a prescribed effluent dose of 30 mL/kg/h was im-
plemented. In hypercatabolic conditions such as heatstroke and 
sepsis, higher doses were prescribed with close monitoring to 
avoid complications like dialysis disequilibrium [6, 28, 30].

The therapeutic objective was to restore urine output, correct 
overhydration, normalize blood gas and electrolyte derange-
ments, and reduce serum creatinine to < 2 mg/dL. The expected 
standardized Kt/V (stdKt/V) per 24-h session was approx-
imately 1.2 in dogs with uncomplicated AKI (equivalent to 
30 mL/kg/h effluent dose), and stdKt/V of 2.0–2.8 (equivalent to 
50–70 mL/kg/h effluent dose) in hypercatabolic states. In these 
cases, the dose was gradually increased every 8–12 h to allow for 
progressive solute clearance and to minimize the risk of dialysis 
disequilibrium [31–33].

The time-averaged concentration (TAC) for urea and creatinine 
was calculated using the trapezoidal rule, incorporating both 

the intradialytic period and the subsequent interdialytic inter-
val for each session. Guidelines for dialysis dose assessment, in-
cluding the examined variables and calculations thereof, can be 
found in Appendix A.

Anticoagulation strategies were tailored based on the dog's co-
agulation profile, as previously described: [28, 29, 34, 35] (1) non-
heparin in cases of significant coagulopathies (prothrombin 
time/partial thromboplastin time > 25% above reference range 
or a platelet count < 30 000/μL); (2) minimal unfractionated hep-
arin (5–10 U/kg/h) for mild coagulopathies (prothrombin time/
partial thromboplastin time < 25% above reference range or a 
platelet count < 100 000/μL), with activated clotting time main-
tained below 180 seconds; (3) standard unfractionated heparin 
for cases without coagulopathies, administered first as a bolus 
(10–50 U/kg), followed by a constant rate infusion (20–50 U/
kg/h) targeting an activated clotting time of 180–250 s. Heparin 
was immediately discontinued when bleeding occurred.

2.5   |   Monitoring

Vital signs, including heart rate, respiratory rate, rectal tempera-
ture, and blood pressure, were recorded every 2–4 h. Blood gas 
analyses (including venous pH, HCO3

−, lactate, and ionized cal-
cium concentration) were performed at similar intervals. Serum 
creatinine was measured every 12 h, while CBC and chemis-
try analyses were performed before and after each session for 
most cases, either immediately after unplanned terminations 
or within 5 min of planned cessation. Pulse oximetry and ECG 
monitoring were documented as clinically indicated.

2.6   |   Statistical Analyses

Continuous variables were described as medians and inter-
quartile ranges (IQR), and the non-parametric Mann–Whitney 
U-test was used to compare continuous variables between 2 
outcome groups. The Fisher's exact test was applied for testing 
associations between categorical variables. Receiver operating 
characteristic curves (ROCC) were constructed to evaluate the 
APPLEFull/APPLEFast and model B scores as predictors of sur-
vival. The maximal point of Youden's index (Sen-[1-Spec]) was 
used as the optimal cutoff value for ROCC analyses. All tests 
were 2-tailed, and p < 0.0016 was considered significant after 
Bonferroni correction for multiple comparisons. Statistical 
analyses were performed using a statistical software pack-
age (GraphPad Prism [version 10.2.3 for Windows, San Diego, 
California]).

3   |   Results

3.1   |   Study Group Demographics 
and Clinical Signs

Thirty dogs (63% females [53% neutered] and 37% males [17% 
neutered]) with a median (IQR) age of 66 (71.5) months were 
included in the study. Mixed-breed dogs accounted for 37% of 
the cases, followed by Golden retrievers (10%) and 16 additional 
breeds comprising 1 dog each.
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Of the cases included, 27 were diagnosed with AKI, and 3 
with acute-on-chronic kidney disease. Presumptive etiologies 
were identified in 67% of the dogs, including heatstroke (5/30), 
snakebite, trauma, pyelonephritis and hemolysis (2/30 for each 
etiology), and orchitis, septic arthritis, hemoabdomen (post-
spaying), splenic torsion, pancytopenia, pancreatitis and idio-
pathic hepatic injury comprising 1 dog each.

Median (IQR) time from onset of clinical signs to presenta-
tion was 3 (3.75) days. Clinical signs at presentation included 
decreased appetite (60%), vomiting (57%), diarrhea (43%), and 
melena/hematochezia (30%). Before commencement of CRRT, 
anuria or oliguria was present in 70% of the dogs but did not cor-
relate with survival (p = 0.37). Additionally, before initiation of 
CRRT, 13 dogs (43%) were overhydrated, 10 dogs (33%) required 
vasopressors, 4 dogs (13%) were mechanically ventilated, and 1 
dog received oxygen support with humidified oxygen therapy.

3.2   |   AKI Grading

Pre-treatment AKI grades were distributed as follows: Grade 1 
in 3% of the dogs, Grade 3 in 13%, Grade 4 in 33%, and Grade 5 in 
50%, with a median (IQR) pre-treatment creatinine concentra-
tion of 9.4 (7.4) mg/dL. Eight dogs (26.7%) developed AKI during 
hospitalization secondary to underlying conditions. One dog 
with IRIS AKI grade 1 underwent CRRT due to 20% fluid over-
load, anuria, and a rise in serum creatinine from 0.6 to 1.4 mg/
dL after trauma and subsequent surgery for bilateral hip luxa-
tion. Despite initiating treatment, the dog died approximately 
12 h into the first CRRT session. No ultrafiltration was possible 
due to persistent hypotension.

3.3   |   Continuous RRT Prescription

A total of 74 CRRT sessions were administered to 30 dogs, with 
each dog undergoing between 1 and 7 sessions. Median (IQR) 
CRRT session duration and total number of sessions per dog 
were 24 (18.5) h and 2 (2), respectively. Ultrafiltration rate was 
guided by the degree of overhydration and tailored to remove 
fluid as rapidly as the dog could tolerate hemodynamically, 
without exceeding 10 mL/kg/h [36]. Hypovolemia was moni-
tored using central venous oxygen saturation (> 70% via blood 
gas), rising PCV/TS and heart rate, and decreasing arterial blood 
pressure. Median (IQR) overall TAC urea and creatinine were 
92.4 (60.46) mg/dL and 3.70 (1.66) mg/dL, respectively. The 
normalized weekly median (IQR) stdKt/V was 2.41 (2.29) [33]. 
Detailed treatment metrics, including effluent dose, total efflu-
ent volume, single-pool Kt/V (spKt/V) per session, normalized 
daily stdKt/V, TACcrea, TACurea, overall URR and CrRR, hourly 
URR and CrRR, blood flow rate, pre-filter replacement rate, 
post-filter replacement rate, and ultrafiltration rate, are summa-
rized in Table  1. All corresponding equations and calculation 
methods are provided in Appendix A.

In six cases where the extracorporeal circuit volume exceeded 
20% of the dog's blood volume or the hematocrit was < 20% (17 
cases), packed red blood cells were used to prime the circuit. 
Blood transfusions were required in 23 out of 30 dogs, while 

fresh frozen plasma transfusions were administered in 17 out 
of 30 dogs. These transfusions were provided before, during, 
or after CRRT as needed to manage bleeding diathesis or 
hypoalbuminemia.

Ten dogs were initiated on CRRT within the first 24 h of admis-
sion, while the remaining 20 dogs started CRRT later during 
hospitalization. Median (IQR) time from hospital admission 
to CRRT initiation was 39 (48) h. Median (IQR) difference (the 
median increase) between serum creatinine immediately be-
fore CRRT initiation and upon admission was 2.9 (3.39) mg/dL. 
Further information regarding pertinent chemistry and blood 
gas variables recorded before and after each CRRT session is 
summarized in Table 2.

3.4   |   Adverse Effects

Adverse events that occurred during CRRT or shortly thereaf-
ter, and were potentially attributable to therapy, were observed 
in all 30 dogs. Common adverse events included anemia (73%), 
hypothermia (70%), hypotension (60%), hyponatremia (37%), 
thrombocytopenia (37%), alkalosis (30%), and fever/hyperther-
mia (30%). Less common adverse effects included hypercapnia 
(27%), melena (27%), shivering (23%), vomiting (20%), carboxy-
hemoglobinemia (20%), leukocytosis (20%) and hypertension 
(17%). Rare adverse events included catheter bleeding (13%), se-
vere bleeding (rapid loss of a large volume of blood that necessi-
tated the urgent administration of blood transfusion to stabilize 
the patient; 13%), catheter infection (7%), and itching at catheter 
insertion site (7%). Alarm-related complications during CRRT 
(per dog) were commonly observed, including low arterial pres-
sure (access line; 80%), filter clotting (67%), inability to detect 
return flow (37%), high venous pressure (return line; 30%), fluid 
balance error (13%), air in the circuit (10%), and no communica-
tion errors (7%). There was no statistically significant difference 
in the prevalence of any of these complications between survi-
vors and non-survivors.

3.5   |   Outcome Prediction and Associations With 
Laboratory Analytes

Several potential associations between survival and clinical 
signs, laboratory test results, and the APPLE scores and model 
B were explored. Statistically significant differences between 
survivors and non-survivors were found with the APPLEFast 
and APPLEFull scores at admission and before CRRT, total 
calcium and phosphate concentrations upon admission, and 
bilirubin, phosphate, and albumin concentrations before 
CRRT. However, barring the APPLEFast/APPLEFull scores, 
statistical significance was lost after adjusting for multi-
ple comparisons (Table  3). All dogs with APPLE mentation 
scores of 3 or 4 died.

The AUROCC for the APPLEFast/APPLEFull scores as outcome 
predictors at admission were 0.88 (95% CI, 0.76–1.00) and 0.89 
(95% CI, 0.78–1.00). The AUROCC for the APPLEFast/APPLEFull 
scores as outcome predictors before CRRT initiation were 0.91 
(95% CI, 0.81–1.00) and 0.99 (95% CI, 0.99–1.00; Figure 1).
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The optimal cutoff points of the APPLEFast/APPLEFull scores 
at admission, with their corresponding sensitivity/specificity, 
were < 23.5 (sensitivity: 100% [95% CI, 74.12% to 100.0%]; spec-
ificity: 63% [95% CI, 41.04% to 80.85%]) and < 33.5 (sensitivity: 
100% [95% CI, 74.12% to 100.00]; specificity: 68.4% [95% CI, 
46.01% to 84.64%]), respectively. The optimal cutoff points of 
the APPLEFast/APPLEFull scores before CRRT initiation, with 
their corresponding sensitivity/specificity, were < 23 (sensitiv-
ity: 90.9% [95% CI, 62.26% to 99.53%]; specificity: 78.9% [95% 
CI, 56.67% to 91.49%]) and < 35 (sensitivity: 100% [95% CI, 
74.12% to 100.0%]; specificity: 94.7% [95% CI, 75.36% to 99.73%]), 
respectively.

Model B did not differentiate survivors from non-survivors 
(p = 0.26), with an AUROCC of 0.62 (95% CI, 0.40–0.84).

Eleven dogs (37%) survived to discharge and were alive at 1- and 
3-months post-discharge. Overall, 4 dogs died while on CRRT, 
and 4 dogs were euthanized owing to lack of improvement, and 
after their owners had declined the transition to IHD. Among 
survivors, median (IQR) serum creatinine concentration (mg/
dL) at discharge and at 1- and 3 months after discharge was 3.4 
(1), 1.5 (1) and 1.3 (0.3), respectively.

4   |   Discussion

In the present study, APPLE scores demonstrated excellent per-
formance in distinguishing survivors from non-survivors among 
critically ill dogs with AKI, undergoing CRRT. Conversely, nei-
ther model B, hitherto considered a good discriminatory model 
in dogs with AKI [3, 12, 13], nor conventional laboratory tests 
proved useful for outcome prediction. Additionally, the results 
demonstrate the feasibility and efficacy of applying KDIGO 
guidelines for CRRT in dogs, with comparable results to previ-
ous studies.

The increased interest in RRT in veterinary medicine has 
shifted dialysis from being solely the domain of nephrolo-
gists to a growing interest among critical care specialists. 
This shift has been prompted by a concurrent shift from tra-
ditional intermittent extracorporeal methods toward continu-
ous modalities, which are increasingly favored in critically ill 
humans and animals which might not tolerate the physiologi-
cal and hemodynamic challenges associated with IHD [6–10]. 
Portable and user-friendly CRRT machines eliminate the need 
for costly and high maintenance water purification systems 
required for IHD. Their accessibility allows bedside treatment 

TABLE 1    |    Detailed continuous renal replacement therapy (CRRT) metrics across 7 sessions of treatment in dogs with acute kidney injury.

CRRT sessiona 1st 2nd 3rd 4th 5th 6th 7thb

spKt/V 1.23 (2.24) 1.72 (3.11) 1.30 (1.38) 2.23 (0.77) 1.60 (2.12) 3.26 (2.69) 0.33 (0)

stdKt/V 1.23 (0.29) 1.25 (0.41) 1.13 (0.11) 1.61 (0.15) 1.61 (1.31) 2.01 (0.89) 4 (0)

TACurea (mg/dL) 165.85 (116.63) 62.77 (65.65) 70.27 (25.27) 70.97 (27.82) 47.97 (13.73) 55.90 (36.64) 132.68 (0)

TACcrea (mg/dL) 5.75 (3.45) 2.95 (1.70) 2.70 (1.80) 2.45 (0.21) 2.83 (1.42) 3.85 (1.42) 3.85 (0)

URRc (%) 67.47 (25.53) 60 (20.24) 61.21 (32.03) 46.66 (28.12) 67.70 (0.78) 60.96 (23.65) 69.47 (0)

Hourly URR (%) 2.06 (1.72) 1.9 (2.80) 2.03 (2.3) 2.14 (0.50) 2.8 (0.03) 2.43 (0.67) 34.73 (0)

CrRR (%) 77.5 (23.90) 60 (39.65) 50 (33.25) 60.52 (17.72) 76.06 (9.4) 58.83 (24.72) 87.53 (0)

Hourly CrRR (%) 2.33 (2.28) 2.46 (2.83) 1.63 (1.62) 2.23 (0.63) 3.16 (0.39) 2.29 (0.55) 40.76 (0)

Total effluent 
volume (mL)

20 886 (36463) 23 616 (46776) 21 555 (21267) 22 320 (15216) 18506.40 (6591) 18619.2 (7819) 5820 (0)

QE (mL/kg/h) 31 (3) 32 (12) 30 (5) 32 (19) 38 (39) 56 (26) 97 (0)

Td (h) 24 (24) 24 (22) 24 (22) 28 (19) 24 (24) 30 (18) 2 (0)

Ti (hr) 0 (8) 12 (4) 12 (12) 8 (2) 36 (12) 24 (0) —

QB (mL/min) 110 (65) 120 (75) 100 (70) 115 (60) 100 (20) 90 (0) 150 (0)

QD (mL/kg/h) 12.5 (1.5) 14.58 (1.5) 20.8 (4.5) 19.6 (2.5) 25 (2.5) 16.7 (1.5) 1500 (0)

QR
pre (mL/kg/h) 12.5 (4) 12.5 (2.5) 4.17 (1.5) 7.14 (1.5) 10.42 (1.5) 5.5 (1.5) 0 (0)

QR
post (mL/kg/h) 7.3 (1.5) 4.3(0.8) 8.3 (2.5) 2.7 (0.8) 0 (0) 1.3 (0.5) 0 (0)

QUF (mL/kg/h) 0 (1.96) 0.41 (1.38) 0 (1.26) 0 (0.5) 0 (1.83) 0 (0) 0 (0)

Abbreviations: QB, Blood flow rate; QD, Dialysate flow rate; QE, Effluent dose; QR
post, post-filter replacement rate; QR

pre, pre-filter replacement Rate; QUF, ultrafiltration 
rate; spKt/V, single-pool Kt/V; stdKt/V, daily standardized Kt/V; TACcrea, time-averaged concentration creatinine -calculated per session and includes both the 
intradialytic treatment period and the following interdialytic interval.; TACurea, time-averaged concentration urea; Td, Td: duration of the dialysis session (intradialytic 
period)Ti, duration of the interval between dialysis sessions (interdialytic period); URR, Urea reduction ratio.
aValues are presented as medians (interquartile ranges).
bSession 7 was performed in a large dog with AKI and pre-existing CKD and intended as a short, high-efficiency prolonged intermittent renal replacement therapy 
session. This session yielded a substantially higher hourly URR of 34.7% but was unintentionally interrupted due to filter clotting. The dog remained dialysis-free for 
3 months post-treatment but was ultimately euthanized due to progressive azotemia.
cIn cases where BUN values exceeded the laboratory detection threshold (> 130 mg/dL), a value of 130 mg/dL was used for consistency, unless an exact value was 
provided.
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in intensive care units without requiring dedicated space. By 
utilizing convection-based clearance mechanisms, these mo-
dalities may be particularly valuable for managing critically ill 
dogs with AKI and inflammatory or infectious diseases (e.g., 
SIRS and sepsis) [6–8, 29].

The present study represented one of the first applications of 
KDIGO guidelines for CRRT in dogs, providing a framework for 
standardized therapy. By prescribing effluent doses of 20–25 mL/
kg/h and adjusting to 30 mL/kg/h to account for therapy inter-
ruptions, this protocol ensured effective solute clearance while 
minimizing complications [28]. This approach supports the fea-
sibility and benefits of aligning veterinary practices with estab-
lished human protocols, paving the way for advanced care and 
consistency in managing AKI in dogs.

To evaluate CRRT adequacy and enable comparison across di-
alysis modalities, we calculated overall and hourly URR, CrRR, 
stdKt/V, spKt/V, TACurea, and TACcrea. In the present study, the 
median (IQR) overall (all sessions included) TACurea was 92.40 
(60.46) mg/dL, aligning with veterinary IHD studies that support 
a TACurea below 128 mg/dL to optimize clinical outcomes [37]. 
Similarly, human studies link time-averaged urea ≤ 96.3 mg/
dL in CRRT with improved survival [38]. These findings sup-
port the adequacy of solute control achieved with the studied 
CRRT protocol herein. While URR is commonly used in IHD, 
it is less reliable in CRRT due to first-order kinetics, where sol-
ute removal declines as concentrations fall. Effluent-based dos-
ing remains the cornerstone of CRRT prescription in humans, 
but actual solute clearance can vary under clinical conditions. 
The assumption of a 1:1 ratio between effluent volume and urea 
clearance might not hold true, especially with impaired filter 
performance, therapy interruptions, or significant pre-dilution 
[33]. In the current study, pre-filter replacement fluid repre-
sented approximately one-quarter of the total effluent dose and 
was accounted for in stdKt/V and spKt/V calculations using a 
pre-dilution correction factor, helping to minimize overestima-
tion of urea clearance. Moreover, because not all sessions lasted 
≥ 24 h, stKt/V values were normalized to a 24-h equivalent to 
allow consistent comparisons across treatments. In intermittent 
dialysis, individual Kt/V values cannot be summed. However, 
owing to the continuous nature of CRRT, simple summation of 
daily stdKt/V values can produce a representative weekly stdK-
t/V [33], thereby allowing cross-modality comparisons. In this 
study, the normalized weekly median (IQR) stdKt/V was 2.41 
(2.29), exceeding the KDOQI minimum target of 2.1 for IHD [39] 
and lower than the typical native kidney function (stdKt/V = 16) 
[40]. Notably, some sessions extended beyond 24 h, during which 
circuit downtime and declining filter performance might have 
reduced solute clearance (due to clogging and clotting) [41]. This 
underscores the need for further research into solute clearance 
and filter efficiency during CRRT, particularly in evaluating dis-
crepancies between prescribed and delivered dialysis doses.

A higher median ultrafiltration rate was observed during the 
second session. This can be attributed to improved hemody-
namic stability in many dogs compared to the initial session. 
Although CRRT is considered the safer modality for hemody-
namically unstable dogs, 60% of the dogs in the present study 
developed hypotension during treatment. However, given that 
one-third of the cohort required vasopressor support before T
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CRRT initiation, it is difficult to determine whether hypotension 
developed because of treatment, secondary to the severity of the 
underlying illness, or both. Twelve dogs, including vasopressor-
dependent or ventilated dogs, did not survive beyond the first 
session, representing the most critically ill subgroup. As a result, 
the remaining dogs receiving a second session were generally 
more stable and better tolerated fluid removal. In some cases, 
dogs that could not undergo ultrafiltration during the first ses-
sion improved clinically and became suitable for fluid removal in 
subsequent treatments. Furthermore, after the second session, 
several dogs began producing urine spontaneously, reducing the 
need for ultrafiltration in later sessions. Collectively, these fac-
tors accounted for changes in ultrafiltration rates employed in 
the different sessions.

Treatment protocol stratification based on initial azotemia was 
not used herein, as the KDIGO-recommended effluent dose 
(20–25 mL/kg/h, adjusted to 30 mL/kg/h for interruptions) is 
relatively low and considered safe even for patients with severe 
azotemia. As a result, hourly URR values in sessions 1 through 6 
remained low (range: 1.9%–2.8%), aligning with veterinary IHD 
guidelines that recommend limiting URR/h to < 5% in the most 
azotemic and neurologically vulnerable dogs to minimize the 
risk of dialysis disequilibrium syndrome. The survival rate in 
the present study was comparable to studies in humans, rang-
ing from 31%–60% [42–44] but lower than those reported in 
previous veterinary studies utilizing RRT of different modalities 
[2–4, 45]. Reported survival rates for dogs and cats undergoing 
CRRT, IHD, or peritoneal dialysis treatments range from 50% 
to 53% at discharge [2], but some of these studies also include 
dogs that become IHD-dependent after hospitalization [2–4, 45] 
or after CRRT [6]. Accordingly, one-year survival rates drop sig-
nificantly, from 53% at discharge to 33%–38% in dogs and cats, 
with 23% of the dogs requiring ongoing IHD treatments in one 

study [45]. In the present study, CRRT proved a feasible treat-
ment modality after conventional medical treatment had failed; 
70% of the dogs had developed diuretic-resistant oliguria/anuria 
and presented with high disease severity scores.

Carboxyhemoglobinemia was commonly documented in dogs 
herein and likely resulted from increased extracorporeal he-
molysis [46]. Consequently, increased hemoglobin catabolism 
ensued, and endogenous carbon monoxide production was 
increased, thereby resulting in high carboxyhemoglobin con-
centrations [47]. Measurements, however, were inconsistently 
documented in dogs in general and across sessions, and there-
fore associations with treatment efficacy or complications 
thereof could not have been investigated.

A number of clinicopathological variables, clinical findings, and 
treatment complications were examined in this study for pos-
sible association with survival, whether at presentation, before 
CRRT initiation, or during treatment. Most of these analyses 
did not reveal find statistically significant associations with out-
come, except the APPLE scores. All dogs in the present study 
which required advanced oxygen support (four on mechanical 
ventilation and one on humidified oxygen therapy) and exhib-
ited respiratory complications, in addition to dogs with higher 
mentation scores, died, in agreement with previous reports in 
dogs and humans [3, 4, 12, 48–50]. Conversely, neither urine 
output (anuria/oliguria) nor the severity of azotemia was asso-
ciated with survival in this study. Lack of association between 
urine output and survival aligns with previous reports in hu-
mans [9, 51, 52] but not with studies of IHD in dogs, where 
urine production is considered a significant predictor of death 
[2, 3, 12, 53]. Similarly, the prognostic value of creatinine re-
mains unclear. While some studies in humans associate higher 
creatinine concentration before CRRT initiation with worse 
outcome [52, 54], others do not [48, 49]. In dogs with AKI and 
treated with IHD, the evidence is equally conflicting, with an 
apparent association between survival and a higher creatinine 
concentration reported in one study [12], but not in most others 
[53, 55, 56]. Additional prognostic markers previously reported 
in studies involving dogs and people undergoing RRT, includ-
ing overhydration [50, 51, 57, 58], bilirubin [55, 59, 60]/albumin 
[61, 62]/lactate [63]/phosphate [12, 61, 63, 64], age [54, 63], vaso-
pressor use [59, 63], white blood cell count [59, 63], platelet count 
[59, 63], and CRRT duration [50] failed to differentiate survivors 
from non-survivors herein. These discrepancies might stem 
from inherent differences between study groups, which vary, in 
part, in terms of species, underlying etiologies, and treatment 
modalities, but might also be the result of a relatively small sam-
ple size in most studies, including the present study. Contrary 
to the above, the robustness of the APPLE scores for outcome 
prediction was corroborated in the present study, in agreement 
with previous studies of dogs with septic shock [65], urosepsis 
[66], critical illness [67], critical illness-related corticosteroid in-
sufficiency [68], SIRS [69], and myocardial injury [70]. Future 
studies are warranted to investigate whether the APPLE scores 
can also be used to stratify dogs with AKI by illness severity and 
guide CRRT strategies accordingly.

There are few studies that specifically evaluate scoring systems 
in dogs undergoing RRT with AKI. In one such study in dogs 
with AKI and managed with CRRT, the APACHE III scoring 

FIGURE 1    |    Receiver operating characteristic curves (ROCC) of 
the Acute Patient Physiologic and Laboratory Evaluation (APPLE)full/
APPLE fast scores as predictors of outcome in dogs with acute kid-
ney injury undergoing continuous renal replacement therapy (CRRT). 
The curves were constructed for either score, both at admission or just 
before initiation of CRRT. Areas under the ROCC (AUROCC) before 
commencement of CRRT were 0.99 (95% CI, 0.99–1.00) for the APPLE 
full and 0.91 (95% CI, 0.81–1.00) for the APPLE fast. At admission, the 
AUROCC for the APPLE full and APPLE fast were 0.89 (95% CI, 0.78–
1.00) and 0.88 (95% CI, 0.76–1.00), respectively.
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system, adopted from human medicine, failed to predict sur-
vival [71]. Another study, in which several novel models were 
constructed to predict survival in dogs with AKI and managed 
by IHD, reported excellent performance of 2 scoring systems 
(“model B” and “model C”, the latter also including etiological 
data), with AUROCC values of 0.88–0.91 [3]. These models were 
later validated prospectively in 2 different studies [12, 13], with 
comparable results. However, when model B was assessed in the 
present study, it performed poorly and failed to differentiate sur-
vivors from non-survivors. This discrepancy might be attributed 
to population-specific factors, most importantly those regarding 
etiology, and treatment modality (i.e., IHD versus CRRT). In our 
cohort of dogs, neither leptospirosis- a readily treatable disease, 
nor ethylene glycol intoxication- a potentially irreversible dis-
ease, were included [2, 3, 55, 56]. Exclusion of these two etiolo-
gies, unlike the original studies where model B was constructed 
and assessed, might have affected its discriminatory efficacy. This 
finding underscores the shortcomings of scoring systems and pre-
dictive models that are based on relatively small groups of dogs 
and highlights the strong influence of etiology on the outcome.

There are several limitations to this study. First, the study group 
was relatively small, and did not include common etiologies 
for AKI such as leptospirosis and ethylene glycol intoxication. 
Second, owing to the retrospective nature of the study, clinical and 
laboratory data could not always be found for all dogs at different 
time points during hospitalization. This precluded the assessment 
of model B before CRRT initiation and prevented the assessment 
of other analytes for outcome prediction during and after CRRT. 
Third, 4 dogs were euthanized owing to lack of response and after 
their owners had declined follow-up IHD therapy. Thus, our find-
ings might not apply to dogs whose management includes IHD 
after initial stabilization with CRRT. Fourth, due to the upper re-
porting limit of 130 mg/dL for some BUN values, direct compar-
ison of urea-based metrics across different modalities, especially 
with IHD, might be limited. This constraint could have led to un-
derestimation of URR, hourly URR, and TACurea in some cases. 
Fifth, given the lack of standardized protocols for CRRT in dogs 
with AKI, we used the human-based, KDIGO guidelines for treat-
ment prescription, regardless of etiology or illness severity except 
for hypercatabolic conditions.

In conclusion, only the APPLEFast/APPLEFull scores effectively 
differentiated survivors from non-survivors in critically ill dogs 
with AKI undergoing CRRT, supporting their potential use as 
ancillary tools for illness severity stratification and for prognos-
tication. Their performance was improved when constructed im-
mediately before CRRT initiation, rather than upon admission. 
In addition, given the findings of the present study, applying the 
KDIGO guidelines to dogs undergoing CRRT is a feasible, effec-
tive protocol for managing dogs with AKI, which can be used 
in the ICU setting, yielding comparable outcomes to previous 
studies. Whether APPLE scores can be used to refine treatment 
decisions and CRRT protocols remains to be determined.
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Appendix A

Dialysis Delivered Dose Assessment

Urea and Creatinine Reduction Ratios

Urea Reduction Ratio (URR)

URR (%) = ([pre-BUN − post-BUN]/pre-BUN) × 100

Creatinine Reduction Ratio (CrRR)

CrRR (%) = ([pre-creatinine − post-creatinine]/pre-creatinine) × 100

Single-Pool Kt/V (spKt/V)

Kt/V = (K × T)/V

Where:

K = clearance (mL/min)

T = treatment duration (minutes)

V = urea distribution volume (mL), calculated as:

V = body weight (kg) × hydration factor

Adapted from:

Cowgill LD. Vet Clin North Am Small Anim Pract. 2011;41(1):193–
225. doi:10.1016/j.cvsm.2010.12.002

Clearance (K) was calculated using an effluent-based formula: 
K (mL/min) = [(Qr + Qd+ Quf)/(1 + Qr/Qb)]

Where:

Qr = replacement fluid rate (mL/min)

Quf = ultrafiltration rate (mL/min)

Qb = blood flow rate (mL/min)

Qd = dialysate flow rate (mL/min)

Adapted and modified to account for pre-dilution effect on di-
alysate from: Chen H, Klainbart S, Kelmer E, et al. Continuous 
renal replacement therapy is a safe and effective modality for 
the initial management of dogs with acute kidney injury. J Am 
Vet Med Assoc. 2022; 261: 87–96.
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Standardized Kt/V (stdKt/V)

Standardized to a 24-hour equivalent and calculated as:

StdKt/V = [(Qd + Qr + Quf) × (Qp/(Qp + Qr))] × 1440/(weight × hy-
dration factor)

Where:

Qp = plasma flow rate (mL/min) = (1 – hematocrit) × Qb (mL/min)

1440 = 24 h × 60 min

All other parameters as above

Adapted from:

Diaz-Buxo JA, Pérez Loredo J. Adv Ren Replace Ther. 
2003;10(3):205–212.

Clark WR, Leblanc M, Ricci Z, Gao D, Ronco C. Adequacy of con-
tinuous renal replacement therapy: prescription and delivery. In: 
Ronco C, Bellomo R, Kellum JA, eds. Critical Care Nephrology. 3rd 
ed. Philadelphia, PA: Elsevier; 2019:1029–1034.e2.

Time-Averaged Concentration (TAC)

TAC = AUC/(td + ti)

Where:

AUC = area under the BUN or creatinine-time curve (mg/dL × hours), 
calculated using the trapezoidal rule

td = intradialytic period (hours)

ti = interdialytic interval (hours)

Adapted from: Cowgill LD. Vet Clin North Am Small Anim 
Pract. 2011;41(1):193–225. doi:10.1016/j.cvsm.2010.12.002

Weekly Standardized Kt/V (StdKt/V)

Standardized to a 7-day equivalent and calculated as: weekly 
StdKt/V = Total StdKt/V

Adapted from: Clark WR, Leblanc M, Ricci Z, Gao D, Ronco C. 
Adequacy of continuous renal replacement therapy: prescrip-
tion and delivery. In: Ronco C, Bellomo R, Kellum JA, eds. 
Critical Care Nephrology. 3rd ed. Philadelphia, PA: Elsevier; 
2019:1029–1034.e2.

Each TAC value was calculated per session, incorporating both the 
treatment duration and the following interdialytic period. For each dog, 
overall TAC was calculated by summing all AUCs and dividing by the 
total duration of dialysis and intersession periods.

Due to laboratory limitations, BUN values reported as “> 130 mg/dL” 
were conservatively recorded as 130 mg/dL unless an exact value was 
provided. To mitigate this limitation and improve accuracy, CrRR and 
TAC for creatinine were included in the analysis. URR was not used to 
guide therapy but was calculated for comparison with previous studies.
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